
BAIRE CATEGORY

CHRISTIAN ROSENDAL

1. THE BAIRE CATEGORY THEOREM

Theorem 1 (The Baire category theorem). Let (Dn)n∈N be a countable family of dense
open subsets of a Polish space X . Then

⋂
n∈NDn is dense in X .

Proof. Fix a compatible complete metric d on X and let V ⊆ X be an arbitrary non-
empty open subset. We need to show that V ∩⋂

n∈NDn 6= ;. So choose inductively
open sets ; 6=Un ⊆ Dn with diam(Un)< 1

n such that

V ⊇U0 ⊇U1 ⊇U1 ⊇U2 ⊇ . . . .

Picking xn ∈Un for all n, we see that (xn) is a Cauchy sequence and thus converges
to some x ∈⋂

n∈NWn =⋂
n∈NWn ⊆V ∩⋂

n∈NDn. So V ∩⋂
n∈NDn 6= ;. �

Exercise 2. Show that the Baire category theorem remains valid in locally compact
Hausdorff spaces.

Exercise 3. Show that for any subset A of a topological space X once has

int cl int cl A = int cl A.

Sets of the form int cl A are called the regular open subsets of X .

A subset A of a topological space X is said to be somewhere dense if there is a
non-empty open set U ⊆ X such that A is dense in U and nowhere dense otherwise,
that is, if int cl A =;. Note that since int cl A = int cl cl A, one sees that A is nowhere
dense if and only if cl A is nowhere dense. For example, the boundary ∂U of any open
set U is nowhere dense.

A ⊆ X is said to be meagre if it is the union of countably many nowhere dense
subsets of X and comeagre if X \ A is meagre. So A is meagre if and only if it can be
covered by countably many closed nowhere dense sets and comeagre if and only if it
contains the intersection of countably many dense open subsets of X .

Note now that the following are equivalent for a topological space X .
• Every comeagre set is dense,
• meagre sets have empty interior.

A space satisfying these properties is said to be a Baire space. E.g., Polish and locally
compact Hausdorff spaces are Baire. On the other hand, Q with the topology induced
from R is not a Baire space, since the whole space is meagre. Thus, a subset of a Baire
space is comeagre if and only of it contains a dense Gδ subset.

Exercise 4. Suppose X is a topological space and Y ⊆ X a subspace.
(i) Show that if Y is a non-meagre subset of X , then Y is non-meagre in its relative
topology.
(ii) Give an example to show that the converse implication fails.
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The meagre subsets of a topological space X form a σ-ideal M , that is,
• if N ⊆ M ∈M , then also N ∈M ,
• if Nn ∈M for all n ∈N, then also

⋃
n∈NNn ∈M .

So, analogously to the null sets of a σ-additive measure, meagreness is a notion of
smallness of a topological space, while comeagreness is a notion of largeness.

Exercise 5. Fix a set X and let P (X ) denote the power set of X and A4B = (A \
B)∪ (B \ A) the symmetric difference of A,B ⊆ X .

Show that P (X ) forms an abelian group with the group operation 4 and identify
the group identity and the inverse of an element A. [Hint: Identify P (X ) with (Z2)X .]

A subset A of a topological space X has the Baire property if there is an open set
U ⊆ X such that M = A4U is meagre or, equivalently, there are an open set U ⊆ X
and a meagre set M ⊆ X such that A =U4M. We also let BP(X ) denote the class of
subsets of X having the Baire property.

Lemma 6. If X is a topological space, BP(X ) is a σ-algebra of subsets of X .

Proof. Suppose that An ⊆ X have the Baire property and Un ⊆ X are open subsets
such that An4Un are meagre. Then(⋃

n
An

)4(⋃
n

Un
)⊆⋃

n
An4Un

is meagre too, showing that
⋃

n An has the Baire property. Moreover,

(∼ A0)4(∼U0)= A04U0 ⊆ (A04U0)∪∂U0

is meagre, whence also ∼ A0 has the Baire property. So BP(X ) is closed under count-
able unions and complementation as required. �

Recall that if X is a topological space, the Borel algebra B(X ) is the σ-algebra
generated by the open subsets of X . Thus, by the preceding lemma, B(X ) ⊆ BP(X ),
meaning that any Borel set has the Baire property.

Almost all the sets encountered in analysis will have the Baire property and, in
fact, to produce sets without the Baire property, one needs the Axiom of Choice in
the follwoing precise sense.

Theorem 7. (S. Shelah – R. M. Solovay) Assuming the consistency of ZF, there is a
model of ZF in which every set of reals A ⊆R has the Baire property.

Suppose X is a topological space and A ⊆ X is any subset. We say that A is
comeagre in an open set U if U \ A is meagre. Let also

U(A)=⋃
{U ⊆ X open

∣∣ A is comeagre in U }.

Theorem 8. U(A) is the largest open set in which A is comeagre.

Proof. Let (Ui)i∈I be a maximal family of pairwise disjoint open sets in which A
is comeagre. Then, for each i ∈ I, there are dense open sets D i

n ⊆ Ui such that⋂
n∈ND i

n ⊆ A, whereby, as D i
n ∩D j

m =; for i 6= j,⋂
n∈N

⋃
i∈I

D i
n = ⋃

i∈I

⋂
n∈N

D i
n ⊆ A.

Since each
⋃

i∈I D i
n is dense in

⋃
i∈I Ui and

⋃
i∈I Ui is dense in U(A), it follows that

each
⋃

i∈I D i
n is dense in U(A), whereby A is comeagre in U(A). �

Corollary 9. A ⊆ X has the Baire property if and only if A4U(A) is meagre.
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Proof. If A has the Baire property, then there is an open set V ⊆ X such that A4V
is meagre, whence A is comeagre in V , and thus V ⊆U(A). It follows that A\U(A)⊆
A \V is meagre too, whence A4U(A) is meagre. �

Exercise 10. In the following, we identify a subset A ⊆ N with its characteristic
function χA ∈ 2N.

Show that if G ⊆ 2N is comeagre there is a partition (In)n∈N of N into disjoint finite
intervals, I0 < I1 < . . . and subsets an ⊆ In such that for all A ⊆N,

(∃∞n A∩ In = an)⇒ A ∈G.

Exercise 11 (Vertical and horizontal sections). Suppose X and Y are Hausdorff. If
A ⊆ X ×Y and x0 ∈ X , y0 ∈Y , we define the vertical and horizontal sections at x0 and
y0 respectively by

Ax0 = {y ∈Y
∣∣ (x0, y) ∈ A},

A y0 = {x ∈ X
∣∣ (x, y0) ∈ A}.

(i) Show that
(∼ A)x0 =∼ Ax0

and that for any family (A i)i∈I of subsets of X ×Y ,( ⋂
i∈I

A i
)
x0

= ⋂
i∈I

(A i)x0

and ( ⋃
i∈I

A i
)
x0

= ⋃
i∈I

(A i)x0 .

(ii) Show also that if A is open or compact in X ×Y , then Ax0 is open, respectively
compact in Y . Conclude that the same holds with closed, Gδ, Fσ and Kσ in place of
open.

Exercise 12 (Direct and inverse images). Let f : X → Y be a function between two
sets.
(i) Decide which of the set theoretical operations ∼,

⋂
and

⋃
commute with taking

direct images, i.e.,
A 7→ f (A).

(ii) Decide which of the set theoretical operations ∼,
⋂

and
⋃

commute with taking
inverse images, i.e.,

B 7→ f −1(B).

Exercise 13 (Coordinate projections). Let X and Y be topological spaces and define
the first coordinate projection πX : X ×Y → X by πX (x, y)= x.
(i) Show that for any family (A i)i∈I of subsets A i ⊆ X ×Y , we have

πX (
⋃
i∈I

A i)=
⋃
i∈I
πX (A i)

and find examples to show that πX does not preserve complement ∼ nor intersection⋂
under forward images.

(ii) Show that πX is continuous and open, i.e., for any open set U ⊆ X ×Y , πX (U) is
open in X .
(iii) Show that if moreover Y is compact and F ⊆ X ×Y is closed, then πX (F) is
closed. Conclude that if instead Y is Kσ and F ⊆ X ×Y is Fσ, then also πX (F) is Fσ.
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Exercise 14 (D. Montgomery, P. S. Novikov). Let X and Y be Polish spaces and
A ⊆ X ×Y a Borel subset. Show that, for any open U ⊆Y , the set

{x ∈ X
∣∣ Ax is comeagre in U}

is Borel. [Hint: Show it first for basic open rectangles A = V ×W and then note
that the class of A with the above property is closed under countable unions and
complementation.]

If X is a topological space and P is a property of points in X , we write ∀∗x P(x) to
denote that the set {x ∈ X

∣∣ P(x)} is comeagre in X and similarly ∃∗x P(x) to denote
that the set {x ∈ X

∣∣ P(x)} is non-meagre in X .

Theorem 15 (K. Kuratowski–S. Ulam). Let X and Y be second countable topological
spaces and A ⊆ X ×Y a set with the Baire property. Then the following are equivalent

(1) A is comeagre in X ×Y ,
(2) ∀∗x ∈ X Ax is comeagre in Y .
(3) ∀∗ y ∈Y A y is comeagre in X .

Proof. By symmetry, it suffices to show the equivalence of (1) and (2).
To see the implication from (1) to (2), fix a basis {Un}n∈N for the topology on Y

consisting of non-empty open sets and find dense open sets Dn ⊆ X ×Y such that⋂
n∈NDn ⊆ A. Then, for any x ∈ X ,

x ∈ ⋂
n,m∈N

πX
(
Dn ∩ (X ×Um)

)⇒∀n ∀m ∃y ∈Y (x, y) ∈ Dn ∩ (X ×Um)

⇒∀n ∀m ∃y ∈Y y ∈Um ∩ (Dn)x

⇒∀n (Dn)x is dense in Y

⇒ ( ⋂
n∈N

Dn
)
x =

⋂
n∈N

(Dn)x is comeagre in Y .

Now, since the projection πX maps a dense open subset of X ×Um to a dense open
subset of X , the countable intersection⋂

n,m∈N
πX

(
Dn ∩ (X ×Um)

)
is comeagre in X , whence

(⋂
n∈NDn

)
x, and a fortiori Ax, is comeagre in Y for a

comeagre set of x ∈ X , i.e., ∀∗x ∈ X Ax is comeagre in Y .
To see that (2) implies (1), suppose that A ⊆ X ×Y is not comeagre and find a non-

empty basic open set U ×V ⊆ X ×Y such that B = (U ×V ) \ A is comeagre in U ×V .
Applying (1)⇒(2) to the set B in the product space U ×V , we see that

∀∗x ∈U Bx =V \ Ax is comeagre in V ,

whence
∀∗x ∈U Ax is not comeagre in Y ,

contradicting (2). �

Note that the statement

∀∗x ∈ X Ax is comeagre in Y

is equivalent to
∀∗x ∈ X ∀∗ y ∈Y (x, y) ∈ A.
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So the Kuratowski–Ulam Theorem can be reformulated as stating that for A ⊆ X×Y
with the Baire property,

∀∗(x, y) (x, y) ∈ A ⇔∀∗x ∀∗ y (x, y) ∈ A

⇔∀∗ y∀∗x (x, y) ∈ A.

This an analogy of the Fubini Theorem that states that a measurable subset of a
product of two probability spaces has full measure if and only if almost all vertical
sections have full measure.

Note also that if An ⊆ X for every n ∈N, then

∀n ∀∗x x ∈ An ⇔∀∗x ∀n x ∈ An.

This follows on the one hand from the Kuratowski–Ulam Theorem or simply from
the fact that a countable intersection of comeagre sets is comeagre.

Exercise 16. Let X and Y be Polish spaces and A ⊆ X ×Y a subset with the Baire
property.
(i) Deduce from the Kuratowski–Ulam Theorem that

A is meagre ⇔∀∗x Ax is meagre in Y

⇔∀∗ y A y is meagre in X .

(ii) Show that

A is non-meagre ⇔∃∗x Ax is non-meagre in Y

⇔∃∗ y A y is non-meagre in X .

(ii) Show that

∀∗x Ax has the Baire property.

Proposition 17 (A zero-one law). Suppose (Xn)n∈N is a sequence of Polish spaces
and A ⊆ ∏

n∈N Xn is a tail set with the Baire property, i.e., if (xn) and (yn) differ in
only finitely many coordinates, then

(xn) ∈ A ⇔ (yn) ∈ A.

Then A is either meagre or comeagre.

Proof. Suppose that A is non-meagre and find a non-empty basic open set U0 × . . .×
Un−1 × Xn × Xn+1 × . . . in which A is comeagre, i.e.,

∀∗(x, y) ∈ (
U0 × . . .×Un−1

)× (
Xn × Xn+1 × . . .

)
(x, y) ∈ A,

whence, by the Kuratowski–Ulam Theorem,

∀∗ y ∈ (
Xn × Xn+1 × . . .

)∀∗x ∈ (
U0 × . . .×Un−1

)
(x, y) ∈ A.

However, since A is a tail set, for any y ∈ Xn×Xn+1× . . . and x, x′ ∈ X0× . . .×Xn−1, we
have (x, y) ∈ A if and only if (x′, y) ∈ A, from which it follows that

∀∗ y ∈ (
Xn × Xn+1 × . . .

)∀x ∈ (
X0 × . . .× Xn−1

)
(x, y) ∈ A.

Using Kuratowski–Ulam once more, we obtain

∀∗(x, y) ∈ (
X0 × . . .× Xn−1

)× (
Xn × Xn+1 × . . .

)
(x, y) ∈ A,

and thus A is comeagre. �
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A function f : X → Y between Polish spaces X and Y is said to be Baire measur-
able if f −1(U) has the Baire property for any open subset U ⊆ Y . Note that, since Y
is second countable, it is enough to consider preimages of basic open sets in Y .

Exercise 18. Suppose f : X →Y is a Baire measurable function between topological
spaces X and Y , where Y is second countable. Show that there is a comeagre Gδ-set
A ⊆ X such that f |A is continuous.

Exercise 19 (Non-smoothness of E0). Let E0 be the equivalence relation defined on
2N by

(xn)E0(yn)⇔∃N ∀n Ê N xn = yn.
Suppose that f : 2N→ X is a Baire measurable function into a Polish space X satify-
ing

xE0 y⇒ f (x)= f (y).
Show that there is a comeagre subset of 2N on which f is constant. [Hint: Consider
inverse images of basic open sets. Alternatively, show that f is constant on the
comeagre set A ⊆ 2N given by Exercise 18.]

Suppose G is a group of homeomorphisms of a topological space X . We say that G
is topologically transitive if for any non-empty open subsets U ,V ⊆ X there is g ∈ G
such that g ·U ∩V 6= ;.

Proposition 20. The following are equivalent for a group G of homeomorphisms of
a Polish space X .

(i) G is topologically transitive,
(ii) there is a dense orbit G · x,

(iii) there is a comeagre set of points with dense orbits.

Proof. That (iii)⇒(ii)⇒(i) is trivial. Also, if {Un}n∈N is a basis for the topology on X
consisting of non-empty open sets and G is topologically transitive, then G ·Un is
dense for every n, whereby⋂

n∈N
G ·Un = ⋂

n∈N
{x ∈ X

∣∣ G · x∩Un 6= ;}= {x ∈ X
∣∣ G · x is dense }

is comeagre, showing (i)⇒(iii). �

2. MYCIELSKI’S INDEPENDENCE THEOREM

Theorem 21 (J. Mycielski). Let X be a non-empty perfect Polish space and R ⊆ X×X
a comeagre set. Then there is a homeomorphic copy C ⊆ X of Cantor space such that
(x, y) ∈ R for all x, y ∈ C, x 6= y.

Proof. Fix a compatible complete metric d on X . Note first that if V0,V1 ⊆ X are non-
empty open subsets and D ⊆ X ×X is dense open, then there are disjoint, non-empty
open subsets U0 ⊆V0, U1 ⊆V1 such that U0 ×U1 ⊆ D. Moreover, by shrinking the Ui
further, one can ensure that the Ui have arbitrarily small diameter.

Now, suppose that R ⊆ X ×X is comeagre and find a decreasing sequence (Dn)n∈N
of dense open subsets of X × X such that R ⊇ ⋂

n∈NDn. We then define a Cantor
scheme (Us)s∈2<N on X satisfying

(1) each Us is a non-empty open set of diameter < 1
|s|+1 ,

(2) Us0 ∩Us1 =; for all s ∈ 2<N,
(3) Us ×Ut ⊆ Dn for all s, t ∈ 2n, s 6= t.
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Letting f : 2N → X be defined by { f (x)} = ⋂
n∈NUx|n, we see that f is continuous,

injective and that ( f (x), f (y)) ∈⋂
n∈NDn ⊆ R for all x 6= y. Let now C = f [2N]. �

Exercise 22. Generalise Theorem 21 to the following statement: If X is a non-empty
perfect Polish space and, for every n, Rn ⊆ X n is a comeagre subset, then there is a
homeomorphic copy of Cantor space C ⊆ X such that for every n and all x1, . . . , xn ∈ C
with xi 6= x j, we have (x1, . . . , xn) ∈ Rn.

Exercise 23. Show that there is a homeomorphic copy C ⊆R of Cantor space that is
linearly independent over Q.

3. POLISH GROUPS

Lemma 24 (S. Banach and B. J. Pettis). Suppose G is a Polish group and A,B ⊆ G
are subsets. Then

U(A) ·U(B)⊆ AB.

Proof. We note that if x ∈U(A)U(B), then the open set

V = xU(B)−1 ∩U(A)=U(xB−1)∩U(A)

is non-empty and so xB−1 and A are comeagre in V . It follows that xB−1 ∩ A 6= ;,
whereby x ∈ AB. �

Theorem 25 (S. Banach–B. J. Pettis). Any Baire measurable homomorphism π : G →
H between Polish groups is continuous.

Proof. It is enough to prove that π is continuous at 1G , i.e., that for any open V 3 1H
in H, π−1(V ) is a neighbourhood of 1G in G. So suppose 1H ∈V ⊆ H is given and find
an open set W ∈ 1H such that WW−1 ⊆V . Then π−1(W) is non-meagre, as it covers G
by countably many left translates, and also has the Baire property. Thus, U(π−1(W))
is non-empty open, and hence by the Banach-Pettis Theorem

1G ∈U(π−1(W))U(π−1(W))−1 ⊆π−1(W)π−1(W)−1 ⊆π−1(V ),

whereby 1G ∈ Int(π−1(V )). �

4. BAIRE CATEGORY AND THE ORBIT STRUCTURE OF POLISH GROUP ACTIONS

Lemma 26. Suppose G is a Polish group acting continuously on a Polish space X
and let x ∈ X . Then the following are equivalent:

(1) For every neighbourhood of the identity V ⊆ G, V · x is comeagre in a neigh-
bourhood of x.

(2) For each neighbourhood of the identity V ⊆G, V · x is somewhere dense.
(3) The orbit G · x is non-meagre.

Proof. (1)⇒(3) is trivial. Also, for (3)⇒(2), suppose G · x is non-meagre and V ⊆ G
is a neighbourhood of 1. Then we can find gn ∈ G such that G = ⋃

n gnV , whence
G · x =⋃

n gnV · x. So some gnV · x, and therefore also V · x, is non-meagre and hence
somewhere dense.

Finally, for (2)⇒(1), suppose that V ·x is somewhere dense for every neighbourhood
V ⊆ G of 1. Suppose towards a contradiction that for some neighbourhood U ⊆ G of
1, U · x is meagre, whence there are closed nowhere dense sets Fn ⊆ X covering U · x.
But then the sets Kn = {g ∈ G

∣∣ g · x ∈ Fn} are closed and cover U and thus, by the
Baire category theorem, some Kn contains a non-empty open set gV , where V is a
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neighbourhood of 1 and g ∈G. So gV ·x ⊆ Fn and V ·x must be nowhere dense, which
is a contradiction.

Now, if V ⊆ G is any neighbourhood of 1, let U ⊆ V be a smaller neighbourhood
such that U−1U ⊆ V . Then U · x is comeagre in some neighbourhood of a point g · x,
where g ∈U , and thus g−1U · x ⊆V · x is comeagre in a neighbourhood of x. �

Lemma 27. Suppose G is a Polish group acting continuously on a Polish space X
and let x ∈ X have a non-meagre orbit G · x. Then for any open subset ; 6=V ⊆G, V · x
is relatively open in G · x.

Proof. Let g ∈ V be given and pick an open set W 3 1 such that W−1W g ⊆ V . By
Lemma 26, z ∈ U(Wz) for any z ∈ G · x. So, for any z ∈ U(W g · x)∩G · x, z ∈ U(W ·
z)∩U(W g · x), whence W · z and W g · x are both comeagre in a neighourhood of z
and hence must intersect, i.e., z ∈ W−1W g · x ⊆ V · x. In other words, for any g ∈ V ,
gx ∈ U(W g · x)∩G · x ⊆ V x, showing that V · x is a relative neighbourhood of gx in
G · x. �

Lemma 28. Suppose G is a Polish group acting continuously on a Polish space X .
Then the following are equivalent:

(1) There is a non-meagre orbit O ⊆ X .
(2) There is a non-empty open set O ⊆ X with the following property: For all open

; 6= V ⊆ O and neighbourhood U ⊆G of 1, there is a smaller open ; 6=W ⊆ V
such that the action of U on W is topologically transitive, i.e., for any non-
empty open W0,W1 ⊆W there is g ∈U such that gW0 ∩W1 6= ;.

Moreover, if O is an orbit comeagre in an open set O ⊆ X , then (2) holds for O.

Proof. (1)⇒(2): If O ⊆ X is a non-meagre orbit, let O ⊆ X be a non-empty open set in
which O is comeagre. Now, if V ⊆O is non-empty open and U ⊆G is a neighbourhood
of 1, pick x ∈V ∩O and choose an open neighbourhood U0 ⊆U of 1 such that U0U−1

0 ⊆
U . Then, by the preceding lemma, U0 ·x is dense in some open neighbourhood W ⊆V
of x and it follows that the action of U on W is topologically transitive.

(2)⇒(1): Suppose O ⊆ X is an open set satisfying the assumption in (2). Fix a
neighbourhood basis {Un}n∈N at 1 ∈G and a basis {Vn}n∈N for the induced topology on
O consisting of non-empty open sets. Now, for every n and m, let Wn,m ⊆Vn be a non-
empty open subset such that the action of U−1

m on Wn,m is topologically transitive.
Then Wm = ⋃

n Wn,m is open dense in O since it intersects every Vn. Also, for any
Vk ⊆Wn,m, Wn,m ∩ (

U−1
m ·Vk

)
is open dense in Wn,m, and so

Dn,m =Wn,m ∩ ⋂
Vk⊆Wn,m

(
U−1

m ·Vk
)

is comeagre in Wn,m. Note also that if x ∈ Dn,m, then for any Vk ⊆Wn,m, Um·x∩Vk 6= ;,
showing that Um · x is dense in Wn,m. We notice that Dm =⋃

n Dn,m is comeagre in O
and that for any x ∈ Dm, Um·x is somewhere dense. It follows that for any x belonging
to the comeagre subset

⋂
m Dm ⊆ O, and for any k, Uk · x is somewhere dense, which

by the previous lemma implies that G · x is non-meagre. �

Combining Lemmas 20 and 28, we have the following characterisation of the ex-
istence of comeagre orbits.

Proposition 29. Suppose G is a Polish group acting continuously on a Polish space
X . Then there is a comeagre orbit on X if and only if
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(1) the action of G is topologically transitive, and
(2) for any non-empty open V ⊆ X and neighbourhood U 3 1, there is a smaller

non-empty open set W ⊆V on which the action of U is topologically transitive.


